2629. Function Composition

Difficulty:
Related Topics:
    Similar Questions:

    Problem

    Given an array of functions [f1, f2, f3, ..., fn], return a new function fn that is the function composition of the array of functions.

    The function composition of [f(x), g(x), h(x)] is fn(x) = f(g(h(x))).

    The function composition of an empty list of functions is the identity function f(x) = x.

    You may assume each function in the array accepts one integer as input and returns one integer as output.

    Example 1:

    Input: functions = [x => x + 1, x => x * x, x => 2 * x], x = 4
    Output: 65
    Explanation:
    Evaluating from right to left ...
    Starting with x = 4.
    2 * (4) = 8
    (8) * (8) = 64
    (64) + 1 = 65
    

    Example 2:

    Input: functions = [x => 10 * x, x => 10 * x, x => 10 * x], x = 1
    Output: 1000
    Explanation:
    Evaluating from right to left ...
    10 * (1) = 10
    10 * (10) = 100
    10 * (100) = 1000
    

    Example 3:

    Input: functions = [], x = 42
    Output: 42
    Explanation:
    The composition of zero functions is the identity function
    

    Constraints:

    Solution (Javascript)

    /**
     * @param {Function[]} functions
     * @return {Function}
     */
    var compose = function (functions) {
      return function (x) {
        let final = x;
        functions.reverse();
        return functions.reduce((final, fn, index) => (final = fn(final)), x);
      };
    };
    
    /**
     * const fn = compose([x => x + 1, x => 2 * x])
     * fn(4) // 9
     */
    

    Explain:

    nope.

    Complexity: