Problem
The frequency of an element is the number of times it occurs in an array.
You are given an integer array nums
and an integer k
. In one operation, you can choose an index of nums
and increment the element at that index by 1
.
Return **the *maximum possible frequency* of an element after performing at most k
operations**.
Example 1:
Input: nums = [1,2,4], k = 5
Output: 3
Explanation: Increment the first element three times and the second element two times to make nums = [4,4,4].
4 has a frequency of 3.
Example 2:
Input: nums = [1,4,8,13], k = 5
Output: 2
Explanation: There are multiple optimal solutions:
- Increment the first element three times to make nums = [4,4,8,13]. 4 has a frequency of 2.
- Increment the second element four times to make nums = [1,8,8,13]. 8 has a frequency of 2.
- Increment the third element five times to make nums = [1,4,13,13]. 13 has a frequency of 2.
Example 3:
Input: nums = [3,9,6], k = 2
Output: 1
Constraints:
1 <= nums.length <= 10^5
1 <= nums[i] <= 10^5
1 <= k <= 10^5
Solution (Java)
class Solution {
public int maxFrequency(int[] nums, int k) {
countingSort(nums);
int start = 0;
int preSum = 0;
int total = 1;
for (int i = 0; i < nums.length; i++) {
int length = i - start + 1;
int product = nums[i] * length;
preSum += nums[i];
while (product - preSum > k) {
preSum -= nums[start++];
length--;
product = nums[i] * length;
}
total = Math.max(total, length);
}
return total;
}
private void countingSort(int[] nums) {
int max = Integer.MIN_VALUE;
for (int num : nums) {
max = Math.max(max, num);
}
int[] map = new int[max + 1];
for (int num : nums) {
map[num]++;
}
int i = 0;
int j = 0;
while (i <= max) {
if (map[i]-- > 0) {
nums[j++] = i;
} else {
i++;
}
}
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).