Problem
Given an array of integers cost
and an integer target
, return **the *maximum* integer you can paint under the following rules**:
The cost of painting a digit
(i + 1)
is given bycost[i]
(0-indexed).The total cost used must be equal to
target
.The integer does not have
0
digits.
Since the answer may be very large, return it as a string. If there is no way to paint any integer given the condition, return "0"
.
Example 1:
Input: cost = [4,3,2,5,6,7,2,5,5], target = 9
Output: "7772"
Explanation: The cost to paint the digit '7' is 2, and the digit '2' is 3. Then cost("7772") = 2*3+ 3*1 = 9. You could also paint "977", but "7772" is the largest number.
Digit cost
1 -> 4
2 -> 3
3 -> 2
4 -> 5
5 -> 6
6 -> 7
7 -> 2
8 -> 5
9 -> 5
Example 2:
Input: cost = [7,6,5,5,5,6,8,7,8], target = 12
Output: "85"
Explanation: The cost to paint the digit '8' is 7, and the digit '5' is 5. Then cost("85") = 7 + 5 = 12.
Example 3:
Input: cost = [2,4,6,2,4,6,4,4,4], target = 5
Output: "0"
Explanation: It is impossible to paint any integer with total cost equal to target.
Constraints:
cost.length == 9
1 <= cost[i], target <= 5000
Solution
class Solution {
public String largestNumber(int[] cost, int target) {
int[][] dp = new int[10][5001];
Arrays.fill(dp[0], -1);
for (int i = 1; i <= cost.length; i++) {
for (int j = 1; j <= target; j++) {
if (cost[i - 1] > j) {
dp[i][j] = dp[i - 1][j];
} else {
int temp =
(dp[i - 1][j - cost[i - 1]] == -1)
? -1
: 1 + dp[i - 1][j - cost[i - 1]];
int t = (dp[i][j - cost[i - 1]] == -1) ? -1 : 1 + dp[i][j - cost[i - 1]];
if (t != -1 && temp == -1) {
temp = t;
} else {
temp = Math.max(t, temp);
}
if (dp[i - 1][j] == -1) {
dp[i][j] = temp;
} else if (temp == -1) {
dp[i][j] = dp[i - 1][j];
} else {
dp[i][j] = Math.max(temp, dp[i - 1][j]);
}
}
}
}
if (dp[9][target] == -1) {
return "0";
}
int i = 9;
StringBuilder result = new StringBuilder();
while (target > 0) {
if ((target - cost[i - 1] >= 0 && dp[i][target - cost[i - 1]] + 1 == dp[i][target])
|| (target - cost[i - 1] >= 0
&& dp[i - 1][target - cost[i - 1]] + 1 == dp[i][target])) {
result.append(i);
target -= cost[i - 1];
} else {
i--;
}
}
return result.toString();
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).