Problem
Given an array of strings nums
containing n
unique binary strings each of length n
, return **a binary string of length *n
* that does not appear in nums
. If there are multiple answers, you may return any of them**.
Example 1:
Input: nums = ["01","10"]
Output: "11"
Explanation: "11" does not appear in nums. "00" would also be correct.
Example 2:
Input: nums = ["00","01"]
Output: "11"
Explanation: "11" does not appear in nums. "10" would also be correct.
Example 3:
Input: nums = ["111","011","001"]
Output: "101"
Explanation: "101" does not appear in nums. "000", "010", "100", and "110" would also be correct.
Constraints:
n == nums.length
1 <= n <= 16
nums[i].length == n
nums[i]
is either'0'
or'1'
.All the strings of
nums
are unique.
Solution (Java)
class Solution {
public String findDifferentBinaryString(String[] nums) {
Set<String> set = new HashSet<>(Arrays.asList(nums));
int len = nums[0].length();
StringBuilder sb = new StringBuilder();
int i = 0;
while (i < len) {
sb.append(1);
i++;
}
int max = Integer.parseInt(sb.toString(), 2);
for (int num = 0; num <= max; num++) {
String binary = Integer.toBinaryString(num);
if (binary.length() < len) {
sb.setLength(0);
sb.append(binary);
while (sb.length() < len) {
sb.insert(0, "0");
}
binary = sb.toString();
}
if (!set.contains(binary)) {
return binary;
}
}
return null;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).