Problem
You are given a positive integer array nums.
Partition nums into two arrays, nums1 and nums2, such that:
- Each element of the array 
numsbelongs to either the arraynums1or the arraynums2. - Both arrays are non-empty.
 - The value of the partition is minimized.
 
The value of the partition is |max(nums1) - min(nums2)|.
Here, max(nums1) denotes the maximum element of the array nums1, and min(nums2) denotes the minimum element of the array nums2.
Return the integer denoting the value of such partition.
Example 1:
Input: nums = [1,3,2,4]
Output: 1
Explanation: We can partition the array nums into nums1 = [1,2] and nums2 = [3,4].
- The maximum element of the array nums1 is equal to 2.
- The minimum element of the array nums2 is equal to 3.
The value of the partition is |2 - 3| = 1.
It can be proven that 1 is the minimum value out of all partitions.
Example 2:
Input: nums = [100,1,10]
Output: 9
Explanation: We can partition the array nums into nums1 = [10] and nums2 = [100,1].
- The maximum element of the array nums1 is equal to 10.
- The minimum element of the array nums2 is equal to 1.
The value of the partition is |10 - 1| = 9.
It can be proven that 9 is the minimum value out of all partitions.
Constraints:
2 <= nums.length <= 1051 <= nums[i] <= 109
Solution (Java)
class Solution {
  public int findValueOfPartition(int[] nums) {
    int n = nums.length, ans = Integer.MAX_VALUE;
    Arrays.sort(nums);
    for (var i=0; i < n-1; i++)
      ans = Math.min(ans, nums[i+1] - nums[i]);
    return ans;
  }
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
 - Space complexity : O(n).