2644. Find the Maximum Divisibility Score

Difficulty:
Related Topics:
Similar Questions:

Problem

You are given two 0-indexed integer arrays nums and divisors.

The divisibility score of divisors[i] is the number of indices j such that nums[j] is divisible by divisors[i].

Return the integer divisors[i] with the maximum divisibility score. If there is more than one integer with the maximum score, return the minimum of them.

Example 1:

Input: nums = [4,7,9,3,9], divisors = [5,2,3]
Output: 3
Explanation: The divisibility score for every element in divisors is:
The divisibility score of divisors[0] is 0 since no number in nums is divisible by 5.
The divisibility score of divisors[1] is 1 since nums[0] is divisible by 2.
The divisibility score of divisors[2] is 3 since nums[2], nums[3], and nums[4] are divisible by 3.
Since divisors[2] has the maximum divisibility score, we return it.

Example 2:

Input: nums = [20,14,21,10], divisors = [5,7,5]
Output: 5
Explanation: The divisibility score for every element in divisors is:
The divisibility score of divisors[0] is 2 since nums[0] and nums[3] are divisible by 5.
The divisibility score of divisors[1] is 2 since nums[1] and nums[2] are divisible by 7.
The divisibility score of divisors[2] is 2 since nums[0] and nums[3] are divisible by 5.
Since divisors[0], divisors[1], and divisors[2] all have the maximum divisibility score, we return the minimum of them (i.e., divisors[2]).

Example 3:

Input: nums = [12], divisors = [10,16]
Output: 10
Explanation: The divisibility score for every element in divisors is:
The divisibility score of divisors[0] is 0 since no number in nums is divisible by 10.
The divisibility score of divisors[1] is 0 since no number in nums is divisible by 16.
Since divisors[0] and divisors[1] both have the maximum divisibility score, we return the minimum of them (i.e., divisors[0]).

Constraints:

Solution (Java)

class Solution {
    public int maxDivScore(int[] nums, int[] divisors) {
        int maxScore=-1;
        int maxElement=-1;
        for(int i=0;i<divisors.length;i++){
            // count of numbers ith divisor can divide
            int score=0;
            for(int j=0;j<nums.length;j++){
                if(nums[j]%divisors[i]==0)
                    score++;
            }

            // updating max count
            if(score==maxScore) // edge condition
                maxElement=Math.min(maxElement,divisors[i]);
            else if(score>maxScore){
                maxScore=score;
                maxElement=divisors[i];
            }
        }
        return maxElement;
    }
}

Explain:

nope.

Complexity: