Problem
Given an array of integers nums
containing n + 1
integers where each integer is in the range [1, n]
inclusive.
There is only one repeated number in nums
, return this repeated number.
You must solve the problem without modifying the array nums
and uses only constant extra space.
Example 1:
Input: nums = [1,3,4,2,2]
Output: 2
Example 2:
Input: nums = [3,1,3,4,2]
Output: 3
Constraints:
1 <= n <= 10^5
nums.length == n + 1
1 <= nums[i] <= n
All the integers in
nums
appear only once except for precisely one integer which appears two or more times.
Follow up:
How can we prove that at least one duplicate number must exist in
nums
?Can you solve the problem in linear runtime complexity?
Solution (Java)
class Solution {
public int findDuplicate(int[] nums) {
int[] arr = new int[nums.length + 1];
for (int num : nums) {
arr[num] += 1;
if (arr[num] == 2) {
return num;
}
}
return 0;
}
}
Solution (Javascript)
/**
* @param {number[]} nums
* @return {number}
*/
var findDuplicate = function(nums) {
for (const val of nums) {
const num = Math.abs(val);
if (nums[num - 1] < 0) {
return num;
}
nums[num - 1] *= -1;
}
};
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).