Problem
The hash of a 0-indexed string s
of length k
, given integers p
and m
, is computed using the following function:
hash(s, p, m) = (val(s[0]) * p0 + val(s[1]) * p1 + ... + val(s[k-1]) * pk-1) mod m
.
Where val(s[i])
represents the index of s[i]
in the alphabet from val('a') = 1
to val('z') = 26
.
You are given a string s
and the integers power
, modulo
, k
, and hashValue.
Return sub
,** the first substring of s
of length k
such that **hash(sub, power, modulo) == hashValue
.
The test cases will be generated such that an answer always exists.
A substring is a contiguous non-empty sequence of characters within a string.
Example 1:
Input: s = "leetcode", power = 7, modulo = 20, k = 2, hashValue = 0
Output: "ee"
Explanation: The hash of "ee" can be computed to be hash("ee", 7, 20) = (5 * 1 + 5 * 7) mod 20 = 40 mod 20 = 0.
"ee" is the first substring of length 2 with hashValue 0. Hence, we return "ee".
Example 2:
Input: s = "fbxzaad", power = 31, modulo = 100, k = 3, hashValue = 32
Output: "fbx"
Explanation: The hash of "fbx" can be computed to be hash("fbx", 31, 100) = (6 * 1 + 2 * 31 + 24 * 312) mod 100 = 23132 mod 100 = 32.
The hash of "bxz" can be computed to be hash("bxz", 31, 100) = (2 * 1 + 24 * 31 + 26 * 312) mod 100 = 25732 mod 100 = 32.
"fbx" is the first substring of length 3 with hashValue 32. Hence, we return "fbx".
Note that "bxz" also has a hash of 32 but it appears later than "fbx".
Constraints:
1 <= k <= s.length <= 2 * 10^4
1 <= power, modulo <= 10^9
0 <= hashValue < modulo
s
consists of lowercase English letters only.The test cases are generated such that an answer always exists.
Solution
class Solution {
public String subStrHash(String s, int power, int modulo, int k, int hashValue) {
long mul1 = 1;
int times = k - 1;
while (times-- > 0) {
mul1 = mul1 * power % modulo;
}
int index = -1;
long hash = 0;
int end = s.length() - 1;
for (int i = s.length() - 1; i >= 0; i--) {
int val = s.charAt(i) - 96;
hash = (hash * power % modulo + val) % modulo;
if (end - i + 1 == k) {
if (hash == hashValue) {
index = i;
}
hash = (hash - (s.charAt(end) - 96) * mul1 % modulo + modulo) % modulo;
end--;
}
}
return s.substring(index, index + k);
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).