890. Find and Replace Pattern

Difficulty:
Related Topics:
Similar Questions:

    Problem

    Given a list of strings words and a string pattern, return a list of words[i] that match pattern. You may return the answer in any order.

    A word matches the pattern if there exists a permutation of letters p so that after replacing every letter x in the pattern with p(x), we get the desired word.

    Recall that a permutation of letters is a bijection from letters to letters: every letter maps to another letter, and no two letters map to the same letter.

      Example 1:

    Input: words = ["abc","deq","mee","aqq","dkd","ccc"], pattern = "abb"
    Output: ["mee","aqq"]
    Explanation: "mee" matches the pattern because there is a permutation {a -> m, b -> e, ...}. 
    "ccc" does not match the pattern because {a -> c, b -> c, ...} is not a permutation, since a and b map to the same letter.
    

    Example 2:

    Input: words = ["a","b","c"], pattern = "a"
    Output: ["a","b","c"]
    

      Constraints:

    Solution (Java)

    class Solution {
        public List<String> findAndReplacePattern(String[] words, String pattern) {
            List<String> finalans = new ArrayList<>();
            if (pattern.length() == 1) {
                Collections.addAll(finalans, words);
                return finalans;
            }
            for (String word : words) {
                char[] check = new char[26];
                Arrays.fill(check, '1');
                HashMap<Character, Character> ans = new HashMap<>();
                for (int j = 0; j < word.length(); j++) {
                    char pat = pattern.charAt(j);
                    char wor = word.charAt(j);
                    if (ans.containsKey(pat)) {
                        if (ans.get(pat) == wor) {
                            if (j == word.length() - 1) {
                                finalans.add(word);
                            }
                        } else {
                            break;
                        }
                    } else {
                        if (j == word.length() - 1 && check[wor - 'a'] == '1') {
                            finalans.add(word);
                        }
                        if (check[wor - 'a'] != '1' && check[wor - 'a'] != pat) {
                            break;
                        }
                        if (check[wor - 'a'] == '1') {
                            ans.put(pat, wor);
                            check[wor - 'a'] = pat;
                        }
                    }
                }
            }
            return finalans;
        }
    }
    

    Explain:

    nope.

    Complexity: