Problem
You have an infinite number of stacks arranged in a row and numbered (left to right) from 0
, each of the stacks has the same maximum capacity.
Implement the DinnerPlates
class:
DinnerPlates(int capacity)
Initializes the object with the maximum capacity of the stackscapacity
.void push(int val)
Pushes the given integerval
into the leftmost stack with a size less thancapacity
.int pop()
Returns the value at the top of the rightmost non-empty stack and removes it from that stack, and returns-1
if all the stacks are empty.int popAtStack(int index)
Returns the value at the top of the stack with the given indexindex
and removes it from that stack or returns-1
if the stack with that given index is empty.
Example 1:
Input
["DinnerPlates", "push", "push", "push", "push", "push", "popAtStack", "push", "push", "popAtStack", "popAtStack", "pop", "pop", "pop", "pop", "pop"]
[[2], [1], [2], [3], [4], [5], [0], [20], [21], [0], [2], [], [], [], [], []]
Output
[null, null, null, null, null, null, 2, null, null, 20, 21, 5, 4, 3, 1, -1]
Explanation:
DinnerPlates D = DinnerPlates(2); // Initialize with capacity = 2
D.push(1);
D.push(2);
D.push(3);
D.push(4);
D.push(5); // The stacks are now: 2 4
1 3 5
﹈ ﹈ ﹈
D.popAtStack(0); // Returns 2. The stacks are now: 4
1 3 5
﹈ ﹈ ﹈
D.push(20); // The stacks are now: 20 4
1 3 5
﹈ ﹈ ﹈
D.push(21); // The stacks are now: 20 4 21
1 3 5
﹈ ﹈ ﹈
D.popAtStack(0); // Returns 20. The stacks are now: 4 21
1 3 5
﹈ ﹈ ﹈
D.popAtStack(2); // Returns 21. The stacks are now: 4
1 3 5
﹈ ﹈ ﹈
D.pop() // Returns 5. The stacks are now: 4
1 3
﹈ ﹈
D.pop() // Returns 4. The stacks are now: 1 3
﹈ ﹈
D.pop() // Returns 3. The stacks are now: 1
﹈
D.pop() // Returns 1. There are no stacks.
D.pop() // Returns -1. There are still no stacks.
Constraints:
1 <= capacity <= 2 * 10^4
1 <= val <= 2 * 10^4
0 <= index <= 10^5
At most
2 * 10^5
calls will be made topush
,pop
, andpopAtStack
.
Solution
class DinnerPlates {
private final List<Stack<Integer>> stacks;
private int stackCap;
private TreeSet<Integer> leftIndex;
public DinnerPlates(int capacity) {
stacks = new ArrayList<>();
stackCap = capacity;
leftIndex = new TreeSet<>();
}
public void push(int val) {
if (!leftIndex.isEmpty()) {
int i = leftIndex.first();
stacks.get(i).push(val);
if (stacks.get(i).size() == stackCap) {
leftIndex.remove(i);
}
return;
}
if (stacks.isEmpty() || stacks.get(stacks.size() - 1).size() == stackCap) {
Stack<Integer> newStack = new Stack<>();
stacks.add(newStack);
}
stacks.get(stacks.size() - 1).push(val);
}
public int pop() {
if (stacks.isEmpty()) {
return -1;
}
while (stacks.get(stacks.size() - 1).isEmpty()) {
leftIndex.remove(stacks.size() - 1);
stacks.remove(stacks.size() - 1);
}
int val = stacks.get(stacks.size() - 1).pop();
if (stacks.get(stacks.size() - 1).isEmpty()) {
leftIndex.remove(stacks.size() - 1);
stacks.remove(stacks.size() - 1);
}
return val;
}
public int popAtStack(int index) {
if (stacks.size() - 1 >= index) {
int val = -1;
if (!stacks.get(index).isEmpty()) {
val = stacks.get(index).pop();
}
if (stacks.get(index).isEmpty() && index == stacks.size() - 1) {
leftIndex.remove(stacks.size() - 1);
stacks.remove(index);
return val;
}
leftIndex.add(index);
return val;
}
return -1;
}
}
/**
* Your DinnerPlates object will be instantiated and called as such:
* DinnerPlates obj = new DinnerPlates(capacity);
* obj.push(val);
* int param_2 = obj.pop();
* int param_3 = obj.popAtStack(index);
*/
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).