Problem
Design a HashSet without using any built-in hash table libraries.
Implement MyHashSet
class:
void add(key)
Inserts the valuekey
into the HashSet.bool contains(key)
Returns whether the valuekey
exists in the HashSet or not.void remove(key)
Removes the valuekey
in the HashSet. Ifkey
does not exist in the HashSet, do nothing.
Example 1:
Input
["MyHashSet", "add", "add", "contains", "contains", "add", "contains", "remove", "contains"]
[[], [1], [2], [1], [3], [2], [2], [2], [2]]
Output
[null, null, null, true, false, null, true, null, false]
Explanation
MyHashSet myHashSet = new MyHashSet();
myHashSet.add(1); // set = [1]
myHashSet.add(2); // set = [1, 2]
myHashSet.contains(1); // return True
myHashSet.contains(3); // return False, (not found)
myHashSet.add(2); // set = [1, 2]
myHashSet.contains(2); // return True
myHashSet.remove(2); // set = [1]
myHashSet.contains(2); // return False, (already removed)
Constraints:
0 <= key <= 10^6
At most
10^4
calls will be made toadd
,remove
, andcontains
.
Solution (Java)
class MyHashSet {
private final boolean[] arr;
public MyHashSet() {
arr = new boolean[1000001];
}
public void add(int key) {
arr[key] = true;
}
public void remove(int key) {
arr[key] = false;
}
public boolean contains(int key) {
return arr[key];
}
}
/**
* Your MyHashSet object will be instantiated and called as such:
* MyHashSet obj = new MyHashSet();
* obj.add(key);
* obj.remove(key);
* boolean param_3 = obj.contains(key);
*/
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).