Problem
Design a HashSet without using any built-in hash table libraries.
Implement MyHashSet class:
void add(key)Inserts the valuekeyinto the HashSet.bool contains(key)Returns whether the valuekeyexists in the HashSet or not.void remove(key)Removes the valuekeyin the HashSet. Ifkeydoes not exist in the HashSet, do nothing.
Example 1:
Input
["MyHashSet", "add", "add", "contains", "contains", "add", "contains", "remove", "contains"]
[[], [1], [2], [1], [3], [2], [2], [2], [2]]
Output
[null, null, null, true, false, null, true, null, false]
Explanation
MyHashSet myHashSet = new MyHashSet();
myHashSet.add(1); // set = [1]
myHashSet.add(2); // set = [1, 2]
myHashSet.contains(1); // return True
myHashSet.contains(3); // return False, (not found)
myHashSet.add(2); // set = [1, 2]
myHashSet.contains(2); // return True
myHashSet.remove(2); // set = [1]
myHashSet.contains(2); // return False, (already removed)
Constraints:
0 <= key <= 10^6At most
10^4calls will be made toadd,remove, andcontains.
Solution (Java)
class MyHashSet {
private final boolean[] arr;
public MyHashSet() {
arr = new boolean[1000001];
}
public void add(int key) {
arr[key] = true;
}
public void remove(int key) {
arr[key] = false;
}
public boolean contains(int key) {
return arr[key];
}
}
/**
* Your MyHashSet object will be instantiated and called as such:
* MyHashSet obj = new MyHashSet();
* obj.add(key);
* obj.remove(key);
* boolean param_3 = obj.contains(key);
*/
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).