Problem
A Bitset is a data structure that compactly stores bits.
Implement the Bitset class:
Bitset(int size)Initializes the Bitset withsizebits, all of which are0.void fix(int idx)Updates the value of the bit at the indexidxto1. If the value was already1, no change occurs.void unfix(int idx)Updates the value of the bit at the indexidxto0. If the value was already0, no change occurs.void flip()Flips the values of each bit in the Bitset. In other words, all bits with value0will now have value1and vice versa.boolean all()Checks if the value of each bit in the Bitset is1. Returnstrueif it satisfies the condition,falseotherwise.boolean one()Checks if there is at least one bit in the Bitset with value1. Returnstrueif it satisfies the condition,falseotherwise.int count()Returns the total number of bits in the Bitset which have value1.String toString()Returns the current composition of the Bitset. Note that in the resultant string, the character at theithindex should coincide with the value at theithbit of the Bitset.
Example 1:
Input
["Bitset", "fix", "fix", "flip", "all", "unfix", "flip", "one", "unfix", "count", "toString"]
[[5], [3], [1], [], [], [0], [], [], [0], [], []]
Output
[null, null, null, null, false, null, null, true, null, 2, "01010"]
Explanation
Bitset bs = new Bitset(5); // bitset = "00000".
bs.fix(3); // the value at idx = 3 is updated to 1, so bitset = "00010".
bs.fix(1); // the value at idx = 1 is updated to 1, so bitset = "01010".
bs.flip(); // the value of each bit is flipped, so bitset = "10101".
bs.all(); // return False, as not all values of the bitset are 1.
bs.unfix(0); // the value at idx = 0 is updated to 0, so bitset = "00101".
bs.flip(); // the value of each bit is flipped, so bitset = "11010".
bs.one(); // return True, as there is at least 1 index with value 1.
bs.unfix(0); // the value at idx = 0 is updated to 0, so bitset = "01010".
bs.count(); // return 2, as there are 2 bits with value 1.
bs.toString(); // return "01010", which is the composition of bitset.
Constraints:
1 <= size <= 10^50 <= idx <= size - 1At most
10^5calls will be made in total tofix,unfix,flip,all,one,count, andtoString.At least one call will be made to
all,one,count, ortoString.At most
5calls will be made totoString.
Solution (Java)
class Bitset {
private boolean[] bits;
private boolean[] flipped;
private int sz;
private int cnt;
public Bitset(int size) {
sz = size;
bits = new boolean[size];
flipped = new boolean[size];
Arrays.fill(flipped, true);
}
public void fix(int idx) {
if (!bits[idx]) {
bits[idx] ^= true;
flipped[idx] ^= true;
cnt += 1;
}
}
public void unfix(int idx) {
if (bits[idx]) {
bits[idx] ^= true;
flipped[idx] ^= true;
cnt -= 1;
}
}
public void flip() {
boolean[] tmp = bits;
bits = flipped;
flipped = tmp;
cnt = sz - cnt;
}
public boolean all() {
return cnt == sz;
}
public boolean one() {
return cnt > 0;
}
public int count() {
return cnt;
}
public String toString() {
StringBuilder sb = new StringBuilder();
for (boolean b : bits) {
sb.append(b ? '1' : '0');
}
return sb.toString();
}
}
/**
* Your Bitset object will be instantiated and called as such:
* Bitset obj = new Bitset(size);
* obj.fix(idx);
* obj.unfix(idx);
* obj.flip();
* boolean param_4 = obj.all();
* boolean param_5 = obj.one();
* int param_6 = obj.count();
* String param_7 = obj.toString();
*/
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).