Problem
You are given the head
of a linked list. Delete the middle node, and return the head
of the modified linked list.
The middle node of a linked list of size n
is the ⌊n / 2⌋th
node from the start using 0-based indexing, where ⌊x⌋
denotes the largest integer less than or equal to x
.
- For
n
=1
,2
,3
,4
, and5
, the middle nodes are0
,1
,1
,2
, and2
, respectively.
Example 1:
Input: head = [1,3,4,7,1,2,6]
Output: [1,3,4,1,2,6]
Explanation:
The above figure represents the given linked list. The indices of the nodes are written below.
Since n = 7, node 3 with value 7 is the middle node, which is marked in red.
We return the new list after removing this node.
Example 2:
Input: head = [1,2,3,4]
Output: [1,2,4]
Explanation:
The above figure represents the given linked list.
For n = 4, node 2 with value 3 is the middle node, which is marked in red.
Example 3:
Input: head = [2,1]
Output: [2]
Explanation:
The above figure represents the given linked list.
For n = 2, node 1 with value 1 is the middle node, which is marked in red.
Node 0 with value 2 is the only node remaining after removing node 1.
Constraints:
The number of nodes in the list is in the range
[1, 10^5]
.1 <= Node.val <= 10^5
Solution (Java)
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
class Solution {
public ListNode deleteMiddle(ListNode head) {
if (head.next == null) {
return null;
}
ListNode slow = head;
ListNode fast = head.next.next;
while (fast != null && fast.next != null) {
slow = slow.next;
fast = fast.next.next;
}
slow.next = slow.next.next;
return head;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).