Problem
Given an integer n
, return **an array *ans
* of length n + 1
such that for each i
(0 <= i <= n
), ans[i]
is the number of 1
's in the binary representation of **i
.
Example 1:
Input: n = 2
Output: [0,1,1]
Explanation:
0 --> 0
1 --> 1
2 --> 10
Example 2:
Input: n = 5
Output: [0,1,1,2,1,2]
Explanation:
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101
Constraints:
0 <= n <= 10^5
Follow up:
It is very easy to come up with a solution with a runtime of
O(n log n)
. Can you do it in linear timeO(n)
and possibly in a single pass?Can you do it without using any built-in function (i.e., like
__builtin_popcount
in C++)?
Solution
class Solution {
public int[] countBits(int num) {
int[] result = new int[num + 1];
int borderPos = 1;
int incrPos = 1;
for (int i = 1; i < result.length; i++) {
// when we reach pow of 2 , reset borderPos and incrPos
if (incrPos == borderPos) {
result[i] = 1;
incrPos = 1;
borderPos = i;
} else {
result[i] = 1 + result[incrPos++];
}
}
return result;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).