1220. Count Vowels Permutation

Difficulty:
Related Topics:
    Similar Questions:

      Problem

      Given an integer n, your task is to count how many strings of length n can be formed under the following rules:

      Each character is a lower case vowel ('a', 'e', 'i', 'o', 'u') Each vowel 'a' may only be followed by an 'e'. Each vowel 'e' may only be followed by an 'a' or an 'i'. Each vowel 'i' may not be followed by another 'i'. Each vowel 'o' may only be followed by an 'i' or a 'u'. Each vowel 'u' may only be followed by an 'a'. Since the answer may be too large, return it modulo 10^9 + 7.

      Example 1:

      Input: n = 1
      Output: 5
      Explanation: All possible strings are: "a", "e", "i" , "o" and "u".
      

      Example 2:

      Input: n = 2
      Output: 10
      Explanation: All possible strings are: "ae", "ea", "ei", "ia", "ie", "io", "iu", "oi", "ou" and "ua".
      

      Example 3:

      Input: n = 5
      Output: 68
      

      Constraints:

      Solution

      /**
       * @param {number} n
       * @return {number}
       */
      var countVowelPermutation = function(n) {
        const [[p1, p2, p3, p4]] = multiply(
          [[1, 0, 0, 0]],
          fastPower(
            [
              [1, 1, 0, 0],
              [1, 0, 1, 0],
              [0, 0, 1, 1],
              [2, 0, 0, -1]
            ],
            n - 1
          )
        )
        return (fix(p1) * 5 + fix(p2) * 5 + fix(p3) * 4 + fix(p4) * 2) % MOD
      };
      
      const MOD = 10 ** 9 + 7
      const MOD_N = BigInt(10 ** 9 + 7)
      
      function multiply (m1, m2) {
        const ret = new Array(m1.length)
        for (let i = 0; i < m1.length; i++) {
          ret[i] = new Array(m2.length).fill(0)
          for (let j = 0; j < m2.length; j++) {
            let sum = 0
            for (let k = 0; k < m2.length; k++) {
              const p = m1[i][k] * m2[k][j]
              const prod = p > Number.MAX_SAFE_INTEGER || p < Number.MIN_SAFE_INTEGER
                ? Number((BigInt(m1[i][k]) * BigInt(m2[k][j])) % MOD_N)
                : p % MOD
      
              sum = (sum + prod) % MOD
            }
            ret[i][j] = sum
          }
        }
        return ret
      }
      
      function Identity (len) {
        const ret = new Array(len)
        for (let i = 0; i < len; i++) {
          ret[i] = new Array(len).fill(0)
          ret[i][i] = 1
        }
        return ret
      }
      
      function fastPower (matrix, expo, cb) {
        if (expo === 0) {
          return Identity(Math.max(matrix.length, matrix[0].length))
        }
        if (expo === 1) {
          return matrix
        }
        if (expo % 2 === 0) {
          const m = fastPower(matrix, expo / 2)
          return multiply(m, m)
        }
        const m = fastPower(matrix, (expo - 1) / 2)
        return multiply(multiply(m, m), matrix)
      }
      
      function fix (n) {
        return n < 0 ? (n + MOD) % MOD : n
      }
      

      Explain:

      nope.