Problem
You are given a list of preferences
for n
friends, where n
is always even.
For each person i
, preferences[i]
contains a list of friends sorted in the order of preference. In other words, a friend earlier in the list is more preferred than a friend later in the list. Friends in each list are denoted by integers from 0
to n-1
.
All the friends are divided into pairs. The pairings are given in a list pairs
, where pairs[i] = [xi, yi]
denotes xi
is paired with yi
and yi
is paired with xi
.
However, this pairing may cause some of the friends to be unhappy. A friend x
is unhappy if x
is paired with y
and there exists a friend u
who is paired with v
but:
x
prefersu
overy
, andu
prefersx
overv
.
Return the number of unhappy friends.
Example 1:
Input: n = 4, preferences = [[1, 2, 3], [3, 2, 0], [3, 1, 0], [1, 2, 0]], pairs = [[0, 1], [2, 3]]
Output: 2
Explanation:
Friend 1 is unhappy because:
- 1 is paired with 0 but prefers 3 over 0, and
- 3 prefers 1 over 2.
Friend 3 is unhappy because:
- 3 is paired with 2 but prefers 1 over 2, and
- 1 prefers 3 over 0.
Friends 0 and 2 are happy.
Example 2:
Input: n = 2, preferences = [[1], [0]], pairs = [[1, 0]]
Output: 0
Explanation: Both friends 0 and 1 are happy.
Example 3:
Input: n = 4, preferences = [[1, 3, 2], [2, 3, 0], [1, 3, 0], [0, 2, 1]], pairs = [[1, 3], [0, 2]]
Output: 4
Constraints:
2 <= n <= 500
n
is even.preferences.length == n
preferences[i].length == n - 1
0 <= preferences[i][j] <= n - 1
preferences[i]
does not containi
.All values in
preferences[i]
are unique.pairs.length == n/2
pairs[i].length == 2
xi != yi
0 <= xi, yi <= n - 1
Each person is contained in exactly one pair.
Solution (Java)
class Solution {
public int unhappyFriends(int n, int[][] preferences, int[][] pairs) {
int unhappyFriends = 0;
Map<Integer, Integer> assignedPair = new HashMap<>();
for (int[] pair : pairs) {
assignedPair.put(pair[0], pair[1]);
assignedPair.put(pair[1], pair[0]);
}
for (int[] pair : pairs) {
if (isUnHappy(pair[1], pair[0], preferences, assignedPair)) {
unhappyFriends++;
}
if (isUnHappy(pair[0], pair[1], preferences, assignedPair)) {
unhappyFriends++;
}
}
return unhappyFriends;
}
private boolean isUnHappy(
int self,
int assignedFriend,
int[][] preferences,
Map<Integer, Integer> assignedPairs) {
int[] preference = preferences[self];
int assignedFriendPreferenceIndex = findIndex(preference, assignedFriend);
for (int i = 0; i <= assignedFriendPreferenceIndex; i++) {
int preferredFriend = preference[i];
int preferredFriendAssignedFriend = assignedPairs.get(preferredFriend);
if (preferredFriendAssignedFriend == self) {
return false;
}
int candidateAssignedFriendIndex =
findIndex(preferences[preferredFriend], preferredFriendAssignedFriend);
if (isPreferred(self, preferences[preferredFriend], candidateAssignedFriendIndex)) {
return true;
}
}
return false;
}
private boolean isPreferred(int self, int[] preference, int boundary) {
for (int i = 0; i <= boundary; i++) {
if (self == preference[i]) {
return true;
}
}
return false;
}
private int findIndex(int[] preference, int assignedFriend) {
for (int i = 0; i < preference.length; i++) {
if (preference[i] == assignedFriend) {
return i;
}
}
return 0;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).