Problem
Given a 0-indexed integer array nums
of size n
and two integers lower
and upper
, return the number of fair pairs.
A pair (i, j)
is **fair **if:
0 <= i < j < n
, andlower <= nums[i] + nums[j] <= upper
Example 1:
Input: nums = [0,1,7,4,4,5], lower = 3, upper = 6
Output: 6
Explanation: There are 6 fair pairs: (0,3), (0,4), (0,5), (1,3), (1,4), and (1,5).
Example 2:
Input: nums = [1,7,9,2,5], lower = 11, upper = 11
Output: 1
Explanation: There is a single fair pair: (2,3).
Constraints:
1 <= nums.length <= 105
nums.length == n
-109 <= nums[i] <= 109
-109 <= lower <= upper <= 109
Solution (Java)
class Solution {
public long countFairPairs(int[] nums, int lower, int upper) {
Arrays.sort(nums);
long result = 0;
for (int i = 0; i < nums.length; i++) {
result = result + binarySearch1(nums, nums[i], i, lower, upper) - binarySearch2(nums, nums[i], i, lower, upper);
}
return result;
}
public long binarySearch1(int[] nums, int currentValue, int index, int lower, int upper) {
int start = index + 1;
int end = nums.length;
while (start < end) {
int mid = start + (end - start) / 2;
if (nums[mid] > (upper - currentValue)) {
end = mid;
} else {
start = mid + 1;
}
}
return start;
}
public long binarySearch2(int[] nums, int currentValue, int index, int lower, int upper) {
int start = index + 1;
int end = nums.length;
while (start < end) {
int mid = start + (end - start) / 2;
if (nums[mid] < (lower - currentValue)) {
start = mid + 1;
} else {
end = mid;
}
}
return start;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).