Problem
We call a positive integer special if all of its digits are distinct.
Given a positive integer n
, return **the number of special integers that belong to the interval **[1, n]
.
Example 1:
Input: n = 20
Output: 19
Explanation: All the integers from 1 to 20, except 11, are special. Thus, there are 19 special integers.
Example 2:
Input: n = 5
Output: 5
Explanation: All the integers from 1 to 5 are special.
Example 3:
Input: n = 135
Output: 110
Explanation: There are 110 integers from 1 to 135 that are special.
Some of the integers that are not special are: 22, 114, and 131.
Constraints:
1 <= n <= 2 * 10^9
Solution
class Solution {
private int[] cntMap;
// number n as an array, splitted by each digit
private int[] digits;
public int countSpecialNumbers(int n) {
if (n < 10) {
return n;
}
int len = (int) Math.log10(n) + 1;
cntMap = new int[len - 1];
int res = countUnbounded(len);
digits = new int[len];
for (int i = len - 1; i >= 0; i--, n /= 10) {
digits[i] = n % 10;
}
return res + dfs(0, 0);
}
private int dfs(int i, int mask) {
if (i == digits.length) {
return 1;
}
int res = 0;
for (int j = i == 0 ? 1 : 0; j < digits[i]; j++) {
if ((mask & (1 << j)) == 0) {
// unbounded lens left
int unbounded = digits.length - 2 - i;
res += unbounded >= 0 ? count(unbounded, 9 - i) : 1;
}
}
if ((mask & (1 << digits[i])) == 0) {
res += dfs(i + 1, mask | (1 << digits[i]));
}
return res;
}
private int count(int i, int max) {
if (i == 0) {
return max;
}
return (max - i) * count(i - 1, max);
}
private int countUnbounded(int len) {
int res = 9;
cntMap[0] = 9;
for (int i = 0; i < len - 2; i++) {
res += cntMap[i + 1] = cntMap[i] * (9 - i);
}
return res;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).