Problem
You are given an undirected graph defined by an integer n
, the number of nodes, and a 2D integer array edges
, the edges in the graph, where edges[i] = [ui, vi]
indicates that there is an undirected edge between ui
and vi
. You are also given an integer array queries
.
Let incident(a, b)
be defined as the number of edges that are connected to either node a
or b
.
The answer to the jth
query is the number of pairs of nodes (a, b)
that satisfy both of the following conditions:
a < b
incident(a, b) > queries[j]
Return **an array *answers
* such that answers.length == queries.length
and answers[j]
is the answer of the jth
query**.
Note that there can be multiple edges between the same two nodes.
Example 1:
Input: n = 4, edges = [[1,2],[2,4],[1,3],[2,3],[2,1]], queries = [2,3]
Output: [6,5]
Explanation: The calculations for incident(a, b) are shown in the table above.
The answers for each of the queries are as follows:
- answers[0] = 6. All the pairs have an incident(a, b) value greater than 2.
- answers[1] = 5. All the pairs except (3, 4) have an incident(a, b) value greater than 3.
Example 2:
Input: n = 5, edges = [[1,5],[1,5],[3,4],[2,5],[1,3],[5,1],[2,3],[2,5]], queries = [1,2,3,4,5]
Output: [10,10,9,8,6]
Constraints:
2 <= n <= 2 * 10^4
1 <= edges.length <= 10^5
1 <= ui, vi <= n
ui != vi
1 <= queries.length <= 20
0 <= queries[j] < edges.length
Solution
class Solution {
public int[] countPairs(int n, int[][] edges, int[] queries) {
Map<Integer, Integer> edgeCount = new HashMap<>();
int[] degree = new int[n];
for (int[] e : edges) {
int u = e[0] - 1;
int v = e[1] - 1;
degree[u]++;
degree[v]++;
int eId = Math.min(u, v) * n + Math.max(u, v);
edgeCount.put(eId, edgeCount.getOrDefault(eId, 0) + 1);
}
Map<Integer, Integer> degreeCount = new HashMap<>();
int maxDegree = 0;
for (int d : degree) {
degreeCount.put(d, degreeCount.getOrDefault(d, 0) + 1);
maxDegree = Math.max(maxDegree, d);
}
int[] count = new int[2 * maxDegree + 1];
for (Map.Entry<Integer, Integer> d1 : degreeCount.entrySet()) {
for (Map.Entry<Integer, Integer> d2 : degreeCount.entrySet()) {
count[d1.getKey() + d2.getKey()] +=
(d1 == d2)
? d1.getValue() * (d1.getValue() - 1)
: d1.getValue() * d2.getValue();
}
}
for (int i = 0; i < count.length; i++) {
count[i] /= 2;
}
for (Map.Entry<Integer, Integer> e : edgeCount.entrySet()) {
int u = e.getKey() / n;
int v = e.getKey() % n;
count[degree[u] + degree[v]]--;
count[degree[u] + degree[v] - e.getValue()]++;
}
for (int i = count.length - 2; i >= 0; i--) {
count[i] += count[i + 1];
}
int[] res = new int[queries.length];
for (int q = 0; q < queries.length; q++) {
res[q] = ((queries[q] + 1) >= count.length) ? 0 : count[queries[q] + 1];
}
return res;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).