Problem
You are given two non-negative integers num1
and num2
.
In one operation, if num1 >= num2
, you must subtract num2
from num1
, otherwise subtract num1
from num2
.
- For example, if
num1 = 5
andnum2 = 4
, subtractnum2
fromnum1
, thus obtainingnum1 = 1
andnum2 = 4
. However, ifnum1 = 4
andnum2 = 5
, after one operation,num1 = 4
andnum2 = 1
.
Return **the *number of operations* required to make either** num1 = 0
or num2 = 0
.
Example 1:
Input: num1 = 2, num2 = 3
Output: 3
Explanation:
- Operation 1: num1 = 2, num2 = 3. Since num1 < num2, we subtract num1 from num2 and get num1 = 2, num2 = 3 - 2 = 1.
- Operation 2: num1 = 2, num2 = 1. Since num1 > num2, we subtract num2 from num1.
- Operation 3: num1 = 1, num2 = 1. Since num1 == num2, we subtract num2 from num1.
Now num1 = 0 and num2 = 1. Since num1 == 0, we do not need to perform any further operations.
So the total number of operations required is 3.
Example 2:
Input: num1 = 10, num2 = 10
Output: 1
Explanation:
- Operation 1: num1 = 10, num2 = 10. Since num1 == num2, we subtract num2 from num1 and get num1 = 10 - 10 = 0.
Now num1 = 0 and num2 = 10. Since num1 == 0, we are done.
So the total number of operations required is 1.
Constraints:
0 <= num1, num2 <= 10^5
Solution (Java)
class Solution {
public int countOperations(int num1, int num2) {
int ans = 0;
while ((num1 * num2) != 0) {
if (num1 >= num2) {
ans += num1 / num2;
num1 = num1 % num2;
} else {
ans += num2 / num1;
num2 = num2 % num1;
}
}
return ans;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).