216. Combination Sum III

Difficulty:
Related Topics:
Similar Questions:

Problem

Find all valid combinations of k numbers that sum up to n such that the following conditions are true:

Return a list of all possible valid combinations. The list must not contain the same combination twice, and the combinations may be returned in any order.

  Example 1:

Input: k = 3, n = 7
Output: [[1,2,4]]
Explanation:
1 + 2 + 4 = 7
There are no other valid combinations.

Example 2:

Input: k = 3, n = 9
Output: [[1,2,6],[1,3,5],[2,3,4]]
Explanation:
1 + 2 + 6 = 9
1 + 3 + 5 = 9
2 + 3 + 4 = 9
There are no other valid combinations.

Example 3:

Input: k = 4, n = 1
Output: []
Explanation: There are no valid combinations.
Using 4 different numbers in the range [1,9], the smallest sum we can get is 1+2+3+4 = 10 and since 10 > 1, there are no valid combination.

  Constraints:

Solution

class Solution {
    public List<List<Integer>> combinationSum3(int k, int n) {
        List<List<Integer>> res = new ArrayList<>();
        solve(k, n, new ArrayList<>(), res, 0, 1);
        return res;
    }

    private void solve(
            int k, int target, List<Integer> temp, List<List<Integer>> res, int sum, int start) {
        if (sum == target && temp.size() == k) {
            res.add(new ArrayList<>(temp));
            return;
        }
        if (temp.size() >= k) {
            return;
        }
        if (sum > target) {
            return;
        }
        for (int i = start; i <= 9; i++) {
            temp.add(i);
            solve(k, target, temp, res, sum + i, i + 1);
            temp.remove(temp.size() - 1);
        }
    }
}

Explain:

nope.

Complexity: