Problem
Given an integer num
, find the closest two integers in absolute difference whose product equals num + 1
or num + 2
.
Return the two integers in any order.
Example 1:
Input: num = 8
Output: [3,3]
Explanation: For num + 1 = 9, the closest divisors are 3 & 3, for num + 2 = 10, the closest divisors are 2 & 5, hence 3 & 3 is chosen.
Example 2:
Input: num = 123
Output: [5,25]
Example 3:
Input: num = 999
Output: [40,25]
Constraints:
1 <= num <= 10^9
Solution (Java)
class Solution {
public int[] closestDivisors(int num) {
int sqrt1 = (int) Math.sqrt(num + 1.0);
int sqrt2 = (int) Math.sqrt(num + 2.0);
if (sqrt1 * sqrt1 == num + 1) {
return new int[] {sqrt1, sqrt1};
}
if (sqrt2 * sqrt2 == num + 2) {
return new int[] {sqrt2, sqrt2};
}
int[] ans1 = new int[2];
for (int i = sqrt1; i >= 1; i--) {
if ((num + 1) % i == 0) {
ans1 = new int[] {i, (num + 1) / i};
break;
}
}
int[] ans2 = new int[2];
for (int i = sqrt2; i >= 1; i--) {
if ((num + 2) % i == 0) {
ans2 = new int[] {i, (num + 2) / i};
break;
}
}
return Math.abs(ans2[0] - ans2[1]) < Math.abs(ans1[0] - ans1[1]) ? ans2 : ans1;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).