1362. Closest Divisors

Difficulty:
Related Topics:
Similar Questions:

    Problem

    Given an integer num, find the closest two integers in absolute difference whose product equals num + 1 or num + 2.

    Return the two integers in any order.

      Example 1:

    Input: num = 8
    Output: [3,3]
    Explanation: For num + 1 = 9, the closest divisors are 3 & 3, for num + 2 = 10, the closest divisors are 2 & 5, hence 3 & 3 is chosen.
    

    Example 2:

    Input: num = 123
    Output: [5,25]
    

    Example 3:

    Input: num = 999
    Output: [40,25]
    

      Constraints:

    Solution (Java)

    class Solution {
        public int[] closestDivisors(int num) {
            int sqrt1 = (int) Math.sqrt(num + 1.0);
            int sqrt2 = (int) Math.sqrt(num + 2.0);
            if (sqrt1 * sqrt1 == num + 1) {
                return new int[] {sqrt1, sqrt1};
            }
            if (sqrt2 * sqrt2 == num + 2) {
                return new int[] {sqrt2, sqrt2};
            }
            int[] ans1 = new int[2];
            for (int i = sqrt1; i >= 1; i--) {
                if ((num + 1) % i == 0) {
                    ans1 = new int[] {i, (num + 1) / i};
                    break;
                }
            }
            int[] ans2 = new int[2];
            for (int i = sqrt2; i >= 1; i--) {
                if ((num + 2) % i == 0) {
                    ans2 = new int[] {i, (num + 2) / i};
                    break;
                }
            }
            return Math.abs(ans2[0] - ans2[1]) < Math.abs(ans1[0] - ans1[1]) ? ans2 : ans1;
        }
    }
    

    Explain:

    nope.

    Complexity: