Problem
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as:
a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example 1:
Given the following tree [3,9,20,null,null,15,7]
:
3
/ \
9 20
/ \
15 7
Return true.
Example 2:
Given the following tree [1,2,2,3,3,null,null,4,4]
:
1
/ \
2 2
/ \
3 3
/ \
4 4
Return false.
Solution (Java)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isBalanced(TreeNode root) {
// Empty Tree is balanced
if (root == null) {
return true;
}
// Get max height of subtree child
// Get max height of subtree child
// compare height difference (cannot be more than 1)
int leftHeight = 0;
int rightHeight = 0;
if (root.left != null) {
leftHeight = getMaxHeight(root.left);
}
if (root.right != null) {
rightHeight = getMaxHeight(root.right);
}
int heightDiff = Math.abs(leftHeight - rightHeight);
// if passes height check
// - Check if left subtree is balanced and if the right subtree is balanced
// - If one of both are imbalanced, then the tree is imbalanced
return heightDiff <= 1 && isBalanced(root.left) && isBalanced(root.right);
}
private int getMaxHeight(TreeNode root) {
if (root == null) {
return 0;
}
int leftHeight = 0;
int rightHeight = 0;
// Left
if (root.left != null) {
leftHeight = getMaxHeight(root.left);
}
// Right
if (root.right != null) {
rightHeight = getMaxHeight(root.right);
}
if (leftHeight > rightHeight) {
return 1 + leftHeight;
} else {
return 1 + rightHeight;
}
}
}
Solution (Javascript)
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {TreeNode} root
* @return {boolean}
*/
var isBalanced = function(root) {
return helper(root, 0) >= 0;
};
var helper = function (root, depth) {
if (!root) return depth;
var left = helper(root.left, depth + 1);
var right = helper(root.right, depth + 1);
if (left === -1 || right === -1 || Math.abs(left - right) > 1) return -1;
return Math.max(left, right);
};
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).