1382. Balance a Binary Search Tree

Difficulty:
Related Topics:
Similar Questions:

    Problem

    Given the root of a binary search tree, return **a *balanced* binary search tree with the same node values**. If there is more than one answer, return *any of them*.

    A binary search tree is balanced if the depth of the two subtrees of every node never differs by more than 1.

      Example 1:

    Input: root = [1,null,2,null,3,null,4,null,null]
    Output: [2,1,3,null,null,null,4]
    Explanation: This is not the only correct answer, [3,1,4,null,2] is also correct.
    

    Example 2:

    Input: root = [2,1,3]
    Output: [2,1,3]
    

      Constraints:

    Solution (Java)

    /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        public TreeNode balanceBST(TreeNode root) {
            List<Integer> inorder = inorder(root, new ArrayList<>());
            return dfs(inorder, 0, inorder.size() - 1);
        }
    
        private List<Integer> inorder(TreeNode root, List<Integer> list) {
            if (root == null) {
                return list;
            }
            inorder(root.left, list);
            list.add(root.val);
            return inorder(root.right, list);
        }
    
        private TreeNode dfs(List<Integer> nums, int start, int end) {
            if (end < start) {
                return null;
            }
            int mid = (start + end) / 2;
            TreeNode root = new TreeNode(nums.get(mid));
            root.left = dfs(nums, start, mid - 1);
            root.right = dfs(nums, mid + 1, end);
            return root;
        }
    }
    

    Explain:

    nope.

    Complexity: