Problem
You are given an integer array nums
of length n
where nums
is a permutation of the numbers in the range [0, n - 1]
.
You should build a set s[k] = {nums[k], nums[nums[k]], nums[nums[nums[k]]], ... }
subjected to the following rule:
The first element in
s[k]
starts with the selection of the elementnums[k]
ofindex = k
.The next element in
s[k]
should benums[nums[k]]
, and thennums[nums[nums[k]]]
, and so on.We stop adding right before a duplicate element occurs in
s[k]
.
Return the longest length of a set s[k]
.
Example 1:
Input: nums = [5,4,0,3,1,6,2]
Output: 4
Explanation:
nums[0] = 5, nums[1] = 4, nums[2] = 0, nums[3] = 3, nums[4] = 1, nums[5] = 6, nums[6] = 2.
One of the longest sets s[k]:
s[0] = {nums[0], nums[5], nums[6], nums[2]} = {5, 6, 2, 0}
Example 2:
Input: nums = [0,1,2]
Output: 1
Constraints:
1 <= nums.length <= 10^5
0 <= nums[i] < nums.length
All the values of
nums
are unique.
Solution (Java)
class Solution {
public int arrayNesting(int[] nums) {
int index;
int value;
int maxLen = 0;
int len;
for (int i = 0; i < nums.length; i++) {
if (nums[i] != -1) {
index = i;
len = 0;
while (nums[index] != -1) {
value = nums[index];
nums[index] = -1;
index = value;
len++;
}
maxLen = Math.max(len, maxLen);
}
}
return maxLen;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).