Problem
Given four lists A, B, C, D of integer values, compute how many tuples (i, j, k, l)
there are such that A[i] + B[j] + C[k] + D[l]
is zero.
To make problem a bit easier, all A, B, C, D have same length of N where 0 ≤ N ≤ 500. All integers are in the range of -228 to 228 - 1 and the result is guaranteed to be at most 2^31 - 1.
Example:
Input:
A = [ 1, 2]
B = [-2,-1]
C = [-1, 2]
D = [ 0, 2]
Output:
2
Explanation:
The two tuples are:
1. (0, 0, 0, 1) -> A[0] + B[0] + C[0] + D[1] = 1 + (-2) + (-1) + 2 = 0
2. (1, 1, 0, 0) -> A[1] + B[1] + C[0] + D[0] = 2 + (-1) + (-1) + 0 = 0
Solution (Java)
class Solution {
public int fourSumCount(int[] nums1, int[] nums2, int[] nums3, int[] nums4) {
int count = 0;
Map<Integer, Integer> map = new HashMap<>();
for (int k : nums3) {
for (int i : nums4) {
int sum = k + i;
map.put(sum, map.getOrDefault(sum, 0) + 1);
}
}
for (int k : nums1) {
for (int i : nums2) {
int m = -(k + i);
count += map.getOrDefault(m, 0);
}
}
return count;
}
}
Solution (Javascript)
/**
* @param {number[]} A
* @param {number[]} B
* @param {number[]} C
* @param {number[]} D
* @return {number}
*/
var fourSumCount = function(A, B, C, D) {
var map = {};
var res = 0;
var key = 0;
for (var i = 0; i < A.length; i++) {
for (var j = 0; j < B.length; j++) {
key = A[i] + B[j];
map[key] = (map[key] || 0) + 1;
}
}
for (var i = 0; i < C.length; i++) {
for (var j = 0; j < D.length; j++) {
key = - (C[i] + D[j]);
res += (map[key] || 0);
}
}
return res;
};
Explain:
nope.
Complexity:
- Time complexity : O(n^2).
- Space complexity : O(1).